Icon Neural Network Ambient Occlusion

 

Icon Three Short Stories about the East Coast Main Line

 

Icon The New Alphabet

 

Icon "The Color Munifni Exists"

 

Icon A Deep Learning Framework For Character Motion Synthesis and Editing

 

Icon The Halting Problem and The Moral Arbitrator

 

Icon The Witness

 

Icon Four Seasons Crisp Omelette

 

Icon At the Bottom of the Elevator

 

Icon Tracing Functions in Python

 

Icon Still Things and Moving Things

 

Icon water.cpp

 

Icon Making Poetry in Piet

 

Icon Learning Motion Manifolds with Convolutional Autoencoders

 

Icon Learning an Inverse Rig Mapping for Character Animation

 

Icon Infinity Doesn't Exist

 

Icon Polyconf

 

Icon Raleigh

 

Icon The Skagerrak

 

Icon Printing a Stack Trace with MinGW

 

Icon The Border Pines

 

Icon You could have invented Parser Combinators

 

Icon Ready for the Fight

 

Icon Earthbound

 

Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

Neural Network Ambient Occlusion

Created on Oct. 4, 2016, 11:26 a.m.

At SIGGRAPH Asia this year I am presenting Neural Network Ambient Occlusion. This short paper uses Machine Learning to produce ambient occlusion from the screen space depth and normals. A large database of ambient occlusion is rendered offline and a neural network trained to produce ambient occlusion from a small patch of screen space information. This network is then converted into a fast runtime shader that runs in a single pass and can be used as a drop-in replacement to other screen space ambient occlusion techniques.

I've provided the learned network weights (represented as filter images) and shader code below. Additionally included in the code & data downloads are good implementations of SSAO, SSAO+, SAO, and HBAO for comparison which also may be of interest to people.

Update: Since this paper was accepted I've found the performance can be significantly improved by adopting the spiral based sampling method used in Scalable Ambient Obscurance (SAO). This produces good results with far fewer samples and reduces the runtime of NNAO by over half to around 1.5ms. This update is included in the code and data linked before, as well as an additional comparison to SAO.

WebpagePaperVideoSlidesShader & FiltersCode & Data

Abstract: We present Neural Network Ambient Occlusion (NNAO), a fast, accurate screen space ambient occlusion algorithm that uses a neural network to learn an optimal approximation of the ambient occlusion effect. Our network is carefully designed such that it can be computed in a single pass - allowing it to be used as a drop-in replacement for existing screen space ambient occlusion techniques.

github twitter rss