Icon Robust Solving of Optical Motion Capture Data by Denoising

 

Icon Simple Concurrency in Python

 

Icon The Software Thief

 

Icon ASCII : A Love Letter

 

Icon My Neural Network isn't working! What should I do?

 

Icon Phase-Functioned Neural Networks for Character Control

 

Icon 17 Line Markov Chain

 

Icon 14 Character Random Number Generator

 

Icon Simple Two Joint IK

 

Icon Generating Icons with Pixel Sorting

 

Icon Neural Network Ambient Occlusion

 

Icon Three Short Stories about the East Coast Main Line

 

Icon The New Alphabet

 

Icon "The Color Munifni Exists"

 

Icon A Deep Learning Framework For Character Motion Synthesis and Editing

 

Icon The Halting Problem and The Moral Arbitrator

 

Icon The Witness

 

Icon Four Seasons Crisp Omelette

 

Icon At the Bottom of the Elevator

 

Icon Tracing Functions in Python

 

Icon Still Things and Moving Things

 

Icon water.cpp

 

Icon Making Poetry in Piet

 

Icon Learning Motion Manifolds with Convolutional Autoencoders

 

Icon Learning an Inverse Rig Mapping for Character Animation

 

Icon Infinity Doesn't Exist

 

Icon Polyconf

 

Icon Raleigh

 

Icon The Skagerrak

 

Icon Printing a Stack Trace with MinGW

 

Icon The Border Pines

 

Icon You could have invented Parser Combinators

 

Icon Ready for the Fight

 

Icon Earthbound

 

Icon Turing Drawings

 

Icon Lost Child Announcement

 

Icon Shelter

 

Icon Data Science, how hard can it be?

 

Icon Denki Furo

 

Icon In Defence of the Unitype

 

Icon Maya Velocity Node

 

Icon Sandy Denny

 

Icon What type of Machine is the C Preprocessor?

 

Icon Which AI is more human?

 

Icon Gone Home

 

Icon Thoughts on Japan

 

Icon Can Computers Think?

 

Icon Counting Sheep & Infinity

 

Icon How Nature Builds Computers

 

Icon Painkillers

 

Icon Correct Box Sphere Intersection

 

Icon Avoiding Shader Conditionals

 

Icon Writing Portable OpenGL

 

Icon The Only Cable Car in Ireland

 

Icon Is the C Preprocessor Turing Complete?

 

Icon The aesthetics of code

 

Icon Issues with SDL on iOS and Android

 

Icon How I learned to stop worrying and love statistics

 

Icon PyMark

 

Icon AutoC Tools

 

Icon Scripting xNormal with Python

 

Icon Six Myths About Ray Tracing

 

Icon The Web Giants Will Fall

 

Icon PyAutoC

 

Icon The Pirate Song

 

Icon Dear Esther

 

Icon Unsharp Anti Aliasing

 

Icon The First Boy

 

Icon Parallel programming isn't hard, optimisation is.

 

Icon Skyrim

 

Icon Recognizing a language is solving a problem

 

Icon Could an animal learn to program?

 

Icon RAGE

 

Icon Pure Depth SSAO

 

Icon Synchronized in Python

 

Icon 3d Printing

 

Icon Real Time Graphics is Virtual Reality

 

Icon Painting Style Renderer

 

Icon A very hard problem

 

Icon Indie Development vs Modding

 

Icon Corange

 

Icon 3ds Max PLY Exporter

 

Icon A Case for the Technical Artist

 

Icon Enums

 

Icon Scorpions have won evolution

 

Icon Dirt and Ashes

 

Icon Lazy Python

 

Icon Subdivision Modelling

 

Icon The Owl

 

Icon Mouse Traps

 

Icon Updated Art Reel

 

Icon Tech Reel

 

Icon Graphics Aren't the Enemy

 

Icon On Being A Games Artist

 

Icon The Bluebird

 

Icon Everything2

 

Icon Duck Engine

 

Icon Boarding Preview

 

Icon Sailing Preview

 

Icon Exodus Village Flyover

 

Icon Art Reel

 

Icon LOL I DREW THIS DRAGON

 

Icon One Cat Just Leads To Another

Robust Solving of Optical Motion Capture Data by Denoising

Created on June 9, 2018, 3:46 p.m.

This year at SIGGRAPH I will be presenting a paper with the goal of removing the need for manual cleaning of motion capture data. The core component of the paper is a deep neural network which learns a mapping between motion capture marker data (which may be unclean) and the the final joint positions and rotations of the character. As it isn't always easy to acquire large databases of unclean and cleaned motion capture data we also present a novel method for data generation where we first attach markers to a character skeleton and then randomly corrupt the marker positions in millions of different ways using a noise function designed to emulate the typical kinds of errors that appear in motion capture data. This results in a method which far more accessible as all it requires is a large database of skeletal motion capture, many of which are freely available online such as the CMU motion capture database.

WebpagePaperVideoArticle

Abstract: Raw optical motion capture data often includes errors such as occluded markers, mislabeled markers, and high frequency noise or jitter. Typically these errors must be fixed by hand - an extremely time-consuming and tedious task. Due to this, there is a large demand for tools or techniques which can alleviate this burden. In this research we present a tool that sidesteps this problem, and produces joint transforms directly from raw marker data (a task commonly called “solving”) in a way that is extremely robust to errors in the input data using the machine learning technique of denoising. Starting with a set of marker configurations, and a large database of skeletal motion data such as the CMU motion capture database [CMU 2013b], we synthetically reconstruct marker locations using linear blend skinning and apply a unique noise function for corrupting this marker data - randomly removing and shifting markers to dynamically produce billions of examples of poses with errors similar to those found in real motion capture data. We then train a deep denoising feed-forward neural network to learn a mapping from this corrupted marker data to the corresponding transforms of the joints. Once trained, our neural network can be used as a replacement for the solving part of the motion capture pipeline, and, as it is very robust to errors, it completely removes the need for any manual clean-up of data. Our system is accurate enough to be used in production, generally achieving precision to within a few millimeters, while additionally being extremely fast to compute with low memory requirements.

github twitter rss